Self-organized assemblies of colloidal particles obtained from an aligned chromonic liquid crystal dispersion.

نویسندگان

  • Natalie Zimmermann
  • Gisela Jünnemann-Held
  • Peter J Collings
  • Heinz-S Kitzerow
چکیده

The behavior of mono-disperse colloidal particles in a chromonic liquid crystal was investigated. Poly(methyl methacrylate) spherical particles with three different functionalizations, with and without surface charges, were utilized in the nematic and columnar phases of disodium cromoglycate solutions. The nematic phase was completely aligned parallel to the glass substrates by a simple rubbing technique, and the columnar phase showed regions of similar alignment. The behavior of the colloidal particles in the chromonic liquid crystal depended critically on the functionality, with bromine functionalized particles not dispersing at all, and cationic trimethylammonium and epoxy functionalized particles dispersing well in the isotropic phase of the liquid crystal. At the transition to the nematic and especially the columnar phase, the colloidal particles were expelled into the remaining isotropic phase. Since the columnar phase grew in parallel ribbons, the colloidal particles ended up in chain-like assemblies. Such behavior opens the possibility of producing patterned assemblies of colloidal particles by taking advantage of the self-organized structure of chromonic liquid crystals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alignment of high-aspect ratio colloidal gold nanoplatelets in nematic liquid crystals

We study elasticity-mediated alignment of anisotropic gold colloids in liquid crystals. Colloidal gold particles of controlled shapes (spheres, rods, and polygonal platelets) and sizes are prepared using well-established biosynthesis techniques with varying solvent conditions. When introduced into liquid crystalline structured solvents, these gold particles impose tangential or vertical surface...

متن کامل

Self-assembly and mesophase formation in a non-ionic chromonic liquid crystal system: insights from dissipative particle dynamics simulations.

Results are presented from a dissipative particle dynamics (DPD) simulation of a model non-ionic chromonic system, TP6EO2M, composed of a poly(ethylene glycol) functionalised aromatic (triphenylene) core. The simulations demonstrate self-assembly of chromonic molecules to form single molecule stacks in solution at low concentrations, the formation of a nematic mesophase at higher concentrations...

متن کامل

Lyotropic Chromonic Liquid Crystals for Biological Sensing Applications

We describe director distortions in the nematic liquid crystal (LC) caused by a spherical particle with tangential surface orientation of the director and show that light transmittance through the distorted region is a steep function of the particle’s size. The effect allows us to propose a real-time microbial sensor based on a lyotropic chromonic LC (LCLC) that detects and amplifies the presen...

متن کامل

Control of colloidal placement by modulated molecular orientation in nematic cells

Colloids self-assemble into various organized superstructures determined by particle interactions. There is tremendous progress in both the scientific understanding and the applications of self-assemblies of single-type identical particles. Forming superstructures in which the colloidal particles occupy predesigned sites and remain in these sites despite thermal fluctuations represents a major ...

متن کامل

Separation of Ultra - Fine Sulphur Particles from Nta Dispersion by Aphron Flotation

Oxidative scrubbing is used to remove H2S from gas streams. A key problem in regeneration of the absorbent is the removal of fine particles of sulphur from the suspension of the scrubbing liquid. Dispersions of ultra-fine bubbles have been called "colloidal gas aphrons" or aphrons for short. These dispersions have interesting properties and it was found that they have particular advantages in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 11 8  شماره 

صفحات  -

تاریخ انتشار 2015